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Self-preserving flow inside a turbulent boundary layer 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(Received 4 November 1964) 

If a thick, turbulent boundary layer is disturbed near the rigid boundary, the 
flow changes are confined initially to a thin layer adjacent to the boundary. 
Elliott (1958) and Panofsky & Townsend (1964) have attempted to calculate 
the flow disturbance caused by an abrupt change in surface roughness by assum- 
ing special velocity distributions which are consistent with a logarithmic velocity 
variation near the boundary. Inspection of their distributions shows that the 
deviations from the upstream distribution are self-preserving in form, and it is 
shown that self-preserving development is dynamically possible if log Zo/zo 
( I ,  being depth of modified flow, zo roughness length) is fairly large and if 1, is small 
compared with the total thickness of the layer. Other kinds of surface distur- 
bance may lead to self-preserving changes of the original flow and the theory is 
developed also for flow downstream of a line roughness, for the temperature 
distribution downstream of a boundary separating an upstream region of uniform 
roughness and heat-flux from a region of different or possibly varying roughness 
and heat-flux, and for the return of a complete boundary layer to self-preserving 
development after a disturbance. The requirement that the distributions of 
velocity and temperature should conform to the logarithmic, equilibrium forms 
near the surface makes the predictions of surface stress and surface flux nearly 
independent of the exact nature of the turbulent transfer process, and the profiles 
of velocity and temperature are determined within narrow limits by the surface 
fluxes. To provide explicit profiles, the mixing-length transfer relation is used. 
Its validity for the self-preserving flows is discussed in an appendix. 

1. Introduction 
Experience shows that a turbulent flow which is capable of developing in a 

self-preserving way does so to a good approximation, well-known examples 
being jets, wakes and boundary layers. The importance of self-preserving flow 
is that rates of change of velocity and length scales can be predicted with no 
more specific assumption about the nature of turbulent motion than that the 
large-scale motion is independent of the fluid viscosity. Whether a flow can be 
self-preserving or not depends on the boundary conditions, an adequate test 
being whether the Reynolds equations for the mean velocity and the turbulent 
energy can be satisfied to a fair approximation by self-preserving distributions 
of mean velocity, Reynolds stress, turbulent energy, etc., which satisfy the 
boundary conditions. For a ‘simple’ flow such as a wake, self-preservation means 
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that the lateral distributions of each quantity have the same form at all distances 
from a flow origin, differing only in common scales of velocity and length. In 
particular, the entrainment velocity (the velocity with which turbulent flow 
spreads into the ambient fluid) is proportional to the velocity scale of the mean 
flow. The flows considered here are perturbations of either equilibrium flows 
or simply self-preserving flows, and it is the deviation of a flow quantity from its 
value in the undisturbed flow that has a self-preserving form. The test for the 
possibility of self-preserving development is the same, but, to satisfy it, different 
scales of velocity must be used for the deviations of mean velocity and turbulent 
stress. As a result, the ‘entrainment velocity’ (now defined as the velocity with 
which the flow perturbation spreads inside the basic flow) is set by the basic flow 
and is independent of the magnitude of the perturbation. 

These self-preserving flows are most likely to be met in the earth’s boundary 
layer and the simplest one is found when a boundary layer passes from a surface 
of one roughness to a surface of different roughness, a problem treated by Elliott 
(1958) and by Panofsky & Townsend (1964), each assuming self-preservation of 
the velocity changes. The more general approach provides the justification for 
the assumption of self-preserving development and shows that flow changes are 
substantially independent of special assumptions about the interaction between 
the turbulence and the mean flow. In  this paper, I consider self-preserving de- 
velopment of velocity and temperature perturbations of a deep boundary layer 
and of velocity over a complete boundary layer. In  another paper, the theoretical 
results will be developed in forms suitable for practical applications and the 
predictions compared with some of the available observations. 

2. The perturbation flow in a deep boundary layer 
Consider a deep, turbulent boundary layer caused by flow in the Ox-direction 

over a horizontal surface with negligible pressure gradient. Vertical transfer of 
heat is assumed to be too small to affect the turbulent motion. For negative x, 
the surface is uniformly rough, and the boundary layer is assumed to have attained 
the equilibrium self-preserving form and a total thickness large compared 
with any of the heights considered. Then upstream of x = 0, the Reynolds stress 
is nearly independent of height and is equal to the surface stress? u:, and the 
vertical distribution of mean velocity is given by 

where k is the Karman constant, w1 is the friction velocity, z is the height, z1 is 
the roughness length of the surface for x < 0.  For positive values of x, the surface 
roughness varies and causes modification of the flow. Since the rate of production 
of turbulent energy in the equilibrium layer upstream is u:/(kz) (also equal to the 
rate of energy dissipation) and the kinetic energy of the turbulent motion is about 
3 4 ,  both per unit mass, the turbulent energy of a fluid parcel entering a region of 

t Kinematic stresses are used, i.e. the mechanical stresses divided by the fluid density. 
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changed rate-of-strain cannot change appreciably in a time much less than 
3kx/u1. In  this time, the mean flow will move the parcel a distance 

Since the influence of the change of surface begins near x = 0, turbulent energy 
and Reynolds stress are almost unchanged along streamlines well above the 
critical surface defined by equation (2.2). It follows that the stress gradient has 
the same value as far upstream, i.e. very nearly zero, so flow acceleration is 
negligible and mean velocity remains constant along streamlines far above the 
critical surface. In  short, the only modification caused by the change of surface 
is a vertical displacement of the streamlines. 

The same argument shows that the turbulent energy and Reynolds stress 
of a fluid parcel can adjust to a changed rate of shear if the parcel moves a distance 
large compared with 32 log z/zo in substantially constant shear (z,, is the local sur- 
face roughness). So the Reynolds stress is determined by local rates of shear at 
heights small compared with the height of the critical surface unless the rough- 
ness length varies rapidly. In  other words, there is an equilibrium layer (Towns- 
end 1961) with a distribution of mean velocity, 

78 z u =-log-, 
20 

where T~ is the local surface stress. The distribution (2.3) sets the inner boundary 
condition for the modified flow. With the outer boundary condition of simple 
displacement of the streamlines, the test for the possibility of self-preserving 
flow can be applied. 

3. Streamline displacement and the velocity distribution 
Far above the critical surface, each streamline is displaced outwards by the 

displacement thickness i$(x), which depends on the net velocity changes along 
streamlines in the region of accelerated flow and which causes a change in the 
velocity a t  constant height of -u,S,/(kz) (figure 1). It is useful to distinguish 
the change in the velocity profile by flow acceleration from the change due to 
streamline displacement. Assuming 6(z), the streamline displacement at  height z, 
to be small compared with z, we write the mean velocity as 

(3.1) U(Z) = Udz) - @(z)/(kz)  + W),  
where u,/(kz) is the velocity gradient in the basic flow from equation (2.1). 
The component V(z)  is determined by the flow accelerations and is expected to 
become very small above the critical surface. The streamline displacement is 
given by the condition of incompressibility so” U&’) dz’ = U(2’) dz’, 

t In atmospheric boundary layers, the kinetic energy may be considerably larger than 
3u5 but the excess is wsociated with swirling motions which contribute little to the 
Reynolds stress. 
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or, to the approximation that S/z is small, by 

/)I1- U)dz’ = SU(2). 

Substituting the form (3.1) 

m 

2 

N 

X 
$ 5 -  

I /’ - 

Defining 

where lo is the thickness of the accelerated region (to be defined later), 

It is implied that I ,  has been chosen so that /log z/Zol is much smaller than log Zo/zl 
over most of the accelerated region and so that C, is of order one. By definition 
of the streamline displacement, 

Integrating by parts in equation (3.3) and using this, 

It follows that 

log Zo/z1 - 1 - 6 
sl - log Z&1- 1 + kV/ul 
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If kV/ul  is of order one or smaller, to order (log Zo/z1)-l 

Again, exactly 

but to order (log Zo/zl)-l 

Vlogz/zodz//m 0 Vdx. 

For small values of z/Zo, V varies as logz/zo, and so &/So is nearly V . Z / / ~ ~  Vdz.  

The ratio of the velocity change by displacement to the change by acceleration 
is nearly u16 - - 1  

-- 
kz V log Zo/z1 - co ’ 

and the ratio 6/z  does not exceed V/Ul. 
The total momentum added to the basic flow in the fetch 0 - x is 

= SoZ(U2-  uq)dz+61uq(Z), (3.7) 

where Z is a height much greater than that of the critical surface. Substituting 
the form (3.1), 

Using the values of 6 and Co given by equations (3.5) and (3.6), the last term re- 
duces to 

and the complete expression for the momentum flux becomes 

P, = /om ( V-g)2dz+?/om Vlog-dz Z 

-2 ; ( l0g--Co ; )-1/;Vlog2<dr. 

$1 

2 
(3.9) 

Putting log z/zl = log z/Zo + log Zo/zl and remembering that log Zo/zl $ Ilogz/Zol over 
nearly the whole range of integration if logZ,/x, is large, the leading terms are 
found to be 

U u,s 2 p, = $(logzo/zl-co)/om Vdz+jorn ( V - z )  dz 

+o( V$ (lOg$)-l). (3.10) 
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If 7 4 (ul/k) log Zo/zl, only the first term need be retained, the remaining terms 
being smaller by a factor of (log Zo/zl)-2. 

When transport of heat or any passive scalar quantity is considered, a similar 
distinction between changes of profile caused by displacement and by lateral 
transport is useful. With the basic temperature distribution 

e z  T1(Z) = - -2 log - , 
k 21 

the increase in temperature due to streamline displacement is Blb/(k& and we 
write the mean temperature as 

~ ( 2 )  = T,(Z) + e,a/(kz) + ~ ( 2 ) .  (3.11) 

The condition of conservation of heat is expressed by 

(3.12) 

where Q, is the additional heat communicated to the fluid as a result of the change 
in heat flux from the surface from the upstream value Q1 to the value Qo(x) at 
position x > 0 (the fluxes are thermometric). 

Substituting the form (3.1 l) ,  

Using equations (3.4) and (3.5) for 8, and S/Sl, we find 

Q, =fom (8+%) ( V - 2 )  dz+~fom810g--dz-k~om z 4 Vlogzdz 
21 21 

(3.14) 

For large values of log Zo/zl, the leading terms are 

+jam (&'+%) ( v - ~ ) d r + O ( T o ( l o g ~ ) - l ) .  el vz (3.15) 

4. First kind of velocity perturbation (change of roughness) 

acceleration component of the form 
The simplest kind of self-preserving velocity perturbation is one with an 

u b  u 
kz k v = u- U1+' = - q ( z / z o ) ,  

where uo is the scale of the change in mean velocity, and lo is the length scale of 
the disturbed region and is comparable in height with the critical surface. Both 
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scales are functions of 2 alone. The inner boundary condition is that the velocity 
distribution assumes the form 

for small values of 7 = z/lo. For this to be possible, it  is necessary that: 

(i) f(z/Z,) = logz/z,+C for small z/Zo, (4.2) 

(ii) (4.3) 78 = u1 + uo{ 1 + (log Zo/zo - M - C0)-'}, 

and 
... u, M 

(111) - = - 
u1 log z,/zo - c + 1 ' (4.4) 

where M = log zl/zo measures the change in roughness. Equations (3.4) and (3.5) 
have been used to evaluate the displacement term for the distribution function of 
(4.2), and terms of order (logl,/~,)-~ have been omitted in the condition (4.4). 

The self-preserving form for the stress distribution is 

7 = U;+'T,p(z/lo), (4.5) 

and necessarily 7, - u4 = r, or a multiple of it. Consistency with the condition 
(4.3) is possible if luo/ull is small, when 

78 = 2u,u,. (4.6) 

Having satisfied the boundary conditions, the distributions are now sub- 
stituted in the Reynolds equation for the mean velocity 

to obtain 

It has been assumed that I U -  U,l < U,, and terms involving the displacement 
component u,B/(kz) have been omitted since their ratio to terms involving V 
is of order (loglo/zo)-l at most. After putting in the values of U, and dU,/dz, 
the equation is seen to be satisfied by the functions f(7) and P(q) if the non- 
dimensional coefficients 

I ,  du 1 dl 1, dt, I ,  duo 
--Olog", -,log-, 
u, ax 2, a x  2, dx '  u, ax 

are either constant or negligibly small. For the large values of log lo/zo necessary 
to make luo/u,l small and for not too small 7, the second coefficient is much the 
largest. For small values of 7, all the terms are comparable but the flow is self- 
preserving since it is part of an equilibrium layer which adjusts itself rapidly to 
the surface stress. A similar situation occurs in the simple self-preserving 
boundary layer (Townsend 1956). To the approximation of large loglo/zo, the 
equation is satisfied by the self-preserving distributions of velocity and stress if 
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the particular value of the constant being chosen for reasons that will become 
clear later. From the relation (4.4) between u, and Z,, the f i s t  coefficient is 

- 2k2 Zo dM +-- log z,/zo - c- 1 M dl, (4.9) 

and is negligible unless ( x / M )  dM/dx becomes appreciable. The self-preserving 
form of the equation of motion valid for large log Z,/z, is 

-7f' = F'. (4.10) 

Similar arguments show that the Reynolds equation for the kinetic energy 
of the turbulent motion is satisfied by the self-preserving distributions 

(4.11) 

where the suffix 1 indicates conditions for the basic flow and the usual notation 
is used for the turbulent fluctuations. To sum up, self-preserving flow is dynamic- 
ally possible if 

(i) the velocity-defect ratio 1 U -  Ull/Ul is small, except for small z/Z,, 
(ii) the variation of the roughness parameter M is slow, i.e. 

Wog I Jq )/d(log x) < 1 

(the conditions are satisfied for constant d(log IM]) /d  log x, but the corresponding 
distributions of roughness length are rather special and unlikely to occur), 

The development of the flow is then described by equations (4.4) and (4.8). 
Notice that the equation for the layer thickness integrates to 

(iii) log Zo/zo is large. 

Z0(log zo/zo - 1) = 2 P X ,  (4.12) 

showing that I ,  is quite close to the height of the critical surface (equation 2.2). 
A full solution of the mean-flow problem would include the explicit form of the 
distribution functionf(q), but the greater part of its variation is in the region of 
small z/Z, where it is necessarily logarithmic as given by equation (4.2). So far 
as the change in surface stress is concerned, the functionf(7) influences its value 
only through the constant C which is of order one. For large logZ,/z,, C has a 
negligible influence on the stress. 

It may appear from equation (4.4) that the surface friction approaches 
asymptotically its original value, irrespective of the change in roughness, but the 
theory depends on the outer flow being unmodified by the change of roughness. 
When Z,, calculated from equation (4.12), is comparable with the total thickness 
of the boundary layer, the theory is no longer applicable, but it is interesting 
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that the surface stress given by the theory is then very near the equilibrium 
value for a boundary layer of the same thickness over a surface of the new rough- 
ness (Panofsky & Townsend 1964). 

An explicit form for the distribution functions can be obtained only by making 
some assumptions about the interaction between the velocity field and the 
turbulent motion. The assumption of self-preserving flow simplifies the discus- 
sion of the interaction in terms of the energy balance, and a second equation 
relating the stress and velocity distribution functions can be obtained by making 
plausible assumptions about the lateral diffusion of turbulent energy and struc- 

0 

- 1  

- 2  

- 3  
- 3  - 2  - 1  0 +1 

log T 

FIGURE 2. Comparison of distribution functions describing the velocity changes induced by 

a change of surface roughness. - - e - 2 / m h  (mixing length) ; - --, 1og*T + (1 + 4.11) 
’ s,” 

(Panofsky & Townsend) ; - -, log 1 (Elliott). 

tural similarity (see appendix). The derivation of the distribution functions in 
this way is rather more difficult than the importance of the problem justifies, 
and it is simpler to use the ‘mixing-length’ transfer relation 

(4.13) 

In terms of the self-preserving functions, it is 

f’ = ? p F .  (4.14) 

Substituting in equation (4.10) and using the boundary condition P(0)  = 1, 

F(7)  = e-7, (4.15) 

and (4.16) 
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The function Ei( -2) approaches +logz+y for small x (where y = 0-577 is 
Euler’s constant), and 

for large q.  The constant C = y, and 

(4.17) 

1 I I I I I I 
0 0.2 0.4 0.6 0.8 1 .o 1 -2 

t 
FIG- 3. The change of velocity downstream of a line roughness, showing the relative 
mgnitudes of the two components for vaxioua values of log l&,. (The numbers on tbe 
curves me values of log Zo/z,.) 

The solutions by Elliott (1958) and by Panofsky & Townsend (1964) assume 
particular forms for the velocity distribution. Elliott assumes a logarithmic 
distribution 

f(7) = log7 (7 G 1) 

in the present notation, for which 

M 
= -  UO - 

u1 log zo/zo + 1 - 
Panofsky & Townsend assume a log-linear distribution, 

for which 

For large log Zo/zo, the various predictions of surface stress are very near each 
other, and figure 2 shows the differences in velocity profile. 
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5. Second kind of velocity perturbation (line-roughness) 
The first kind of self-preserving flow is possible only with a step change in the 

surface roughness since the condition (4.4) demands no flow disturbance if the 
roughness regains its upstream value. If localized roughness exists near the line 
x = 0, perhaps in the form of a fence, another kind of self-preserving flow dis- 
turbance is possible, but it contains two components of disturbance. Qualita- 
tively, the components are the wake of the localized roughness which is dominant 
at heights of order I,, and a flow change associated with the lessened surface 
stress arising from sheltering. We put 

where the fist term is the streamline-displacement term, the second the change 
due to change of surface stress, and the third the wake component. As before, 
u,, oo and I ,  are functions of x, and correct behaviour in the equilibrium layer 
near the surface and far above the critical surface is obtained if 

(i) f(7) = log7 + C, for small 7, g(0) = 1 

and f(7) -+ 0, g(7) --f 0 for large 7, 
TQ = u1 + uo{l + (log I,/Z, - cO)-l), (5.2) 

and (iii) uo(log zo/xo - C,) = v,. (5.3) 
(ii) 

It follows from the last condition that the wake component is much larger than 
the surface component except very near the surface. The self-preserving dis- 
tribution of stress is 

where P(0) = 1, H ( 0 )  = 0 and both become small for large values of z/Zo. Sub- 
stituting the forms in the equation for the mean velocity, it can be confirmed 
that self-preserving flow is dynamically possible under much the same conditions 
as before, i.e. small velocity defect as a fraction of the local velocity and large 
log Zo/zo. To the approximation in use, the equation of mean flow is 

T -u$ = 2uou,P(z/Z,) + 2v,ulG(z/Z,), (5.4) 

for not too small values of 7, and it is of self-preserving form if 

dl I, 1 
d l o g -  = 2k2 and L 3 l o g  2 = const. 
dx zo vo dx zo 

Although the flow for small values of z/Z, is determined by the surface stress and 
so by the velocity scale u,, the contribution of the surface function to the total 
velocity change is very small. To find the variation of the velocity scales, consider 
the rate of change of momentum flux in the whole flow. From equation (3.10), 
the flux additional to that of the basic flow is 

P, = u v l  -=%olog- 10 

k2 ZO 
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to the approximation of self-preserving development, where 

The condition of conservation of total momentum is then 

ax 

Using the equation for 1, (5.6) and the relation (5.3) between uo and wo, we find 
that 

wo oc Z;l(log z o / ~ o ) - l - l ~ ~ ~ .  (5.8) 

To the approximation in use, then, 

and the equation of motion takes the non-dimensional form, 

g + qg’ = - G’, (5.9) 

i.e. 7s = - G ,  
since G(0) = 0. 

Equation (5.8) indicates a slow decrease of the difference-momentum flux 
with distance from the line roughness, caused by the change in surface friction. 
In  fact 

(5.10) 

the constant of proportionality depending on the nature of the line-roughness. 
For a fence of height h, its order of magnitude could be found by equating the 
drag on the fence to the defect of momentum flux when the height of the modified 
layer equalled the fence height. If the drag on the fence is 

the magnitudes of the scales are given (by (5.6) and (5.8)) as 

(5.11) 

As before, the mixing-length relation is used to obtain a velocity profile. 

2k2x = ZO(l0g &/zO - 1) - h(log h/Zo - l ) ,  

Io~oZo(log Zo/~o)l+l~zo = Caul h(l0g h/zo)2+1/zo. 

Not too close to the surface it gives 

9’ = 7-’G, 

and substitution in equation (5.9) leads to 

g+g’ = 0, 

with solution g(7) = e-7. 

The distribution function for stress is 

G(7) = -ye-7. 

(5.12) 

(5.13) 

(5.14) 
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The surface component of the flow can be found only by considering aspects of 
the flow that are not self-preserving. As an illustration, put 

f(7) = log7 for 7 < 1, 
= 0 for 7 > 1. 

Then the complete distribution is 

(5.15) 
= - (v,/k) e-11 

The velocity distribution is shown in figure 3 for several large values of log Zo/zo. 
The diminishing importance of the surface component for large log Zo/zo is clearly 
shown. 

6. Disturbance of a boundary layer on a flat plate 
A distinct and interesting example of a self-preserving perturbation of a basic 

flow concerns a boundary layer on a flat plate which is approaching the asymp- 
totic self-preserving form of development with velocity and Reynolds stress 
distributions of the forms 

u,(4 = u, - (Ul/~>fl(Z/S,) ,  

71(2) = ~2,4(~/4J, 
where U, is the velocity of the free stream, and u, and So are scales of velocity and 
length. It is well known that self-preserving development of this kind is dynami- 
cally possible at large Reynolds numbers if u, is the friction velocity and if 
8, = z,, exp (kUo/u,) and varies with distance from the flow origin as specified by 

Sodso - k2 00 

xo ax I ,  0 
log- - - -, where I ,  = 1 f,(r) dq 

(see, for example, Townsend 1956). In  a particular layer, the distributions of 
velocity and stress may depart from the self-preserving forms but approach them 
asymptotically with increase of downstream distance. The causes of the de- 
partures may be found in details of the transition process, the presence of surface- 
roughness upstream or possibly earlier development in an adverse pressure 
gradient. At least in the later stages of development, the deviations from the 
basic self-preserving form are distributed over the whole thickness of the layer 
and not confined to a thin surface layer like the flows considered in the previous 
sections. Then, if we look for self-preserving perturbations of the basic flow, 
we must use the same length scale So and may postulate a perturbation of a form 
similar to that used in the previous section 

50 Fluid Mech. 22 
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The presence of perturbations at the outer limit of the flow makes unnecessary 
the inclusion of a displacement component of the change of velocity. The dis- 
tribution functions satisfy the same boundary conditions as before and so 

(6.3) 

Substitution in the equation of mean flow confirms that the self-preserving 
development is possible for small perturbations and large values of log S,/zo. 
The leading terms of the equation are 

u,(log6,/z, - C,) = u,. 

Since U, = (ul /k)  logS,/z,, constancy of the coefficient ratios is obtained if v, cc 82, 
To find the exponent, we use the condition of conservation of total momentum 

where 

d ax k O F ]  = - 2u1u0, 

Using the condition (6.3), 
2ro cx 6,-l(log 6,/zo)-1-~~~Z0, 

(6.5) 

and the non-dimensional form of the equation of mean flow is 

- 9 - 79‘ = 211 G‘. (6.7) 

For a simple boundary layer, the relation between Reynolds stress and velocity 
gradient in the outer part of the flow is adequately described by a coefficient of 
eddy viscosity vT related to the velocity distribution by 

(Townsend 1961). To the approximation of small disturbance, the change in 
Reynolds stress is 

or, in non-dimensional form, 
2k2R,G = I.9’. 

Combining the eddy-viscosity relation with the equation of mean flow leads to the 
equation for the velocity-distribution function, 

- g - 7s’ = (I:/k2R,) G .  (6.10) 

The appropriate solution is 
g(7)  = e--8RaP, (6.11) 

where R = kR!/I,. With the same eddy viscosity, the basic velocity distribution 
is 

(6.12) 

with much the same asymptotic behaviour as the velocity perturbation. 
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The magnitudes of the velocity and stress changes may be compared using the 
eddy-viscosity assumption. In  the outer flow, the maximum change is vo/k or, 
expressed as a fraction of the free stream velocity, vo/(ul log So/zo). The change of 
stress is T - T ~  = u l ~ o  (kR!)-lRqe-@%'. (6.13) 

The maximum change expressed as a fraction of the surface stress is 

Prom measured profiles, kRt = 3.2 and Il = 0.56. For a fairly thick boundary 
layer in a wind tunnel, logSo/zo is about ten, and the fractional change in stress 
is about three times the fractional change in velocity. In  practice, the stress 
changes should be much more evident than the velocity changes since they reach 
a maximum near the middle of the layer while the velocity changes have much 
the same form as the basic profile. 

(%/ul) e-*/(@). 

7. Self-preserving distributions of temperature 
The Eulerian concept of self-preserving development can be and has been 

extended to describe the turbulent diffusion of a convected scalar such as tem- 
perature, and it is equivalent to the concept of Lagrangian similarity developed 
by Batchelor (1957), by Ellison (1959) and by Cermak (1963). If the diffusion 
takes place in a flow undergoing modification through changes of surface con- 
ditions, the Eulerian method has the advantages of greater flexibility and of 
permitting tests of consistency with the equations of motion and of conservation 
of the diffused quantity. For convenience, consider diffusion of heat from surface 
sources in a deep boundary layer that passes from an upstream region of uniform 
surface roughness and heat-flux to a region of different, and possibly varying, 
surface roughness and surface flux. The heat flux is supposed so small that the 
consequent density variations are without effect on the motion, which is under- 
going self-preserving development of the first kind described by the theory of 
0 4. For simplicity, it is assumed that the fluid temperature extrapolated to the 
roughness height equals the physical temperature of the surface and that the 
eddy-transport coefficients for momentum and heat are equal in equilibrium 
D w s ,  i.e. T = T,-glog-,  z 

k5-i zo 

where Tg is the local ground temperature, and Qo is the local thermometric flux 
from the surface. Neither of the assumptions is essential and modifications for 
departures are not difficult. 

The argument is very similar to that used for the changes in flow velocity. 
For negative x, the whole flow is an equilibrium layer and, taking the upstream 
ground temperature as zero, the temperature distribution is 

Tl = -%log-. Z 
ku1 21 

For positive x, the temperature distribution is written as 

(7.3) 

60-2 
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where 0, is a scale of temperature dependent on x, I ,  is the length-scale of the 
modified flow given by equation (4.12), and the term QIS/(kulz) represents the 
change in temperature by streamline displacement. The inner boundary con- 
dition is that the temperature distribution has the form (7.1). Using the relations 
(3.4) and (3.5) for 6, the inner condition can be satisfied if 

q5(q) = log 7 + C, for small q, I 

Inspection of the last two conditions suggests that simple behaviour is likely 
(i) if Q1 = 0 with Qo possibly a function of position, or (ii) if Q1 = Q,,. The linearity 
of the heat equation means that the temperature distribution caused by the dis- 
tribution of surface flux defined by Q1 and Qo has the linear form 

where the functions p ,  q depend on the flow although p may depend also on the 
streamwise variation of Qo/Q1. It follows that combinations of the two special 
cases can be used to describe the temperature distributions for a wide variety of 
flux conditions. 

For Q1 = 0, the temperature scale is, very nearly, 

$0 = Qo/(ui+uo), 

and the surface temperature is given by 

kul  To = Qo( log &/zo + ikf - Cz). 
A self-preserving distribution of heat flux is 

where qo must equal Q0 since the flux is Qo a t  the surface and is zero for large 
values of z/Io. Substituting the self-preserving forms for velocity and tempera- 
ture in the heat equation, 

aT aT awe u-+ w-+- = 0,  
ax ax az 

and discarding terms of order (log Z, /Z , ) -~ ,  we obtain 

(7.10) 

Self-preserving development of the temperature field is possible with the length- 
scale given by equation (4.8) if the surface flux varies nearly as a power of the 
length scale. If Qo cc Z:, the non-dimensional form of the heat equation is 

- n#l + q$i + i@i = 0. (7.11) 
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To the approximation used, self-preserving development is also possible for 
Qo cc x" with the same non-dimensional form of the heat equation and, if Qo(x) 
can be represented by a power series, the temperature distribution can be 
expressed as the superposition of self-preserving distributions. For this particular 
case, the change of roughness enters only through the lower boundary conditions, 
giving a shift of surface temperature and a small change of temperature scale. 

Further confirmation of the possibility of self-preserving developments can be 
obtained by substituting forms for the distributions of wT8 and the rate of 
destruction of T O  (analogous with the relations (4.11)) in the equation for the 
turbulent heat flux 

The other special case Q1 = Qoy is trivial unless there is a change of roughness. 
The temperature scale is - 

e -  MQo { 1 + (2 + M )  (log bo/zl)-l)Y 
O - u1(l0g bo/zo - c + l) 

and the surface temperature is given by 

(7.12) 

(7.13) 

Substitution of the temperature distribution (7.3) and the flux distribution 
- 
w e  = Qo + 40 @z(z/bo), (7.14) 

leads to (7.15) 

For self-preserving development, qo = eoul and log Zo/.zo must be large. The non- 

(7.16) dimensional form is then 

Notice that the surface temperature is nearly constant while the scales of tem- 
perature and flux vary as (log bo/z0)-l. 

Explicit distributions may be obtained by assuming that the eddy diffusivity 
for heat is the same as for momentum and is given by the mixing-length relation, 

a = - k7*Z(aT/aZ). (7.17) 
i.e. that 

In  terms of the distribution functions, the non-dimensional form is 

?/$;+ p; = 0. 

4o@(r)  = @O/Ul) Q1G(r) +eOulr$'(r) (7.18) 

for small perturbations. For Q1 = 0, it becomes 

a1 = rK 
and can be substituted in the non-dimensional heat equation (7.11) to give 

*r5& + (7 + & - nf4 = 0. (7.19) 
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If Qo varies slowly (n = d(log Qo)/dlogz < l), the distribution functions are 

I 01(7) = e-21, 

(7.20) 

I w log 7 +log 2 + y for small 7, 

N e--27/27 for large 7. 

With this choice of transfer relation, C, = y + log 2. An interesting feature is 
that the temperature change falls off as exp ( - 27) much more rapidly than the 
change of velocity induced by a change of roughness, although the eddy dif- 
fusivities for heat and momentum are assumed equal a t  all points. 

For Q1 = Qo, the transfer relation is (using equation 4.15) 

O, = q&- e-, 

and substitution in equation (7.16) leads to the distribution functions 

02(7) = - 2(e-)1- e-21) 
since 02(0) = 0, and 

w log 7 + slog 2 - y for small 7, } 

(7.21) 

(7.22) 

J for large 7. 

In  this case, the approach to the original distribution is similar to that of the 

velocity field. As required by equation (7.16), 7)dy  = 0, and deviations 

from the original distribution occur with both signs. 
The distribution functions obtained by assuming the mixing-length eddy 

diffusivity can be used to find the temperature distribution for a great variety 
of imposed distributions of surface flux, and, although the assumption is probably 
in error except for small values of z/Zo, they provide a reasonable approximation. 
Alternatively, experiments might be performed to determine empirically the 
functions f(7) and #(7) since the possibility of self-preserving development does 
not depend on the nature of the transfer process. 

In  practical problems, the surface flux may not be specified. If i t  is not, another 
surface condition is necessary, the most general being some functional relation 
between flux, surface temperature and position. Usually the consequent varia- 
tion of surface flux in the stream direction will be sufficiently slow for the tem- 
perature distribution to be a linear combination of the distributions for the 
special cwes considered above, using the third matching condition (7.4) to find 
the surface flux. For example, if the distribution of surface temperature is speci- 
fied, the ‘constant-flux’ component of the distribution is known from the up- 
stream value of the surface flux, and the ‘ constant-flux ’ distribution of ground 

1 0 3  ( 
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FIUTJRE 4. Comparison of distribution functions describing the temperature changes 

induced by a sudden change of surface heat-flux. -, - e-az/zdz; ---, log 4 + (1 - 4) ; 
9 log 24. -- 

r 

FIGURE 5. Comparison of distribution functions describing the temperature changes 
induced by a change of roughness without any change of surface heat-flux. - , Mixing 
length; - - -, Panofsky & Townsend profile; - - , Elliott profile. 
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temperature is given by equation (7.13). The component induced by the change 
in flux has a temperature scale found by substituting for Tg in the equation 

ku1 Tg = (u1+ uo) (log &/zo + M - cz) 80 (7.23) 

(obtained from the conditions (7.6) and (7.7)) the difference between the specified 
surface temperature and the ' constant-flux ' value. The requirements for self- 
preserving development of the two components will be met if the logarithmic rate 
of variation of this difference is small. 

8. Diffusion from a line source of heat 
The equivalent for heat transfer of flow modification by a line roughness is 

additional heat flux concentrated near the line x = 0, and self-preserving develop- 
ment of the temperature profile is possible of a similar kind, i.e. with 

where #3(0) = 1, $(q) = logr+C3 for small values of r,  and both functions 
approach zero for large 7. The development exists in a pure form, i.e. uncompli- 
cated by superimposed temperature fields of the kind considered in the previous 
section if both the upstream heat flux and the ground temperature are zero. 
Then the inner boundary condition is satisfied if 

and 

where Qo is the surface flux. The condition of overall conservation of heat leads to 

where 

showing that 8,Z0 log zo/zo cc (log Z0/zo)-1'% (8.4) 

Substitution in the heat equation then leads to the non-dimensional form 

# 3 + r # ; + g %  = 0, 

r # 3 +  i p 3  = 0, so that 
where the flux distribution is 

a = Qoy(z/&) + qo @3(z/z0)> (8.6) 

where Y(0) = 1, Q3(0) = 0. As for the line roughness, the contribution of the wall 
component with scale 8, is small over most of the modified layer, and the tem- 
perature at small, but not too small, heights is very nearly Bo/k if log Zo/zo is large. 

(8.7) 
Approximately, 8, cc x-l-VCar, log lo/%). 

Since much of the heat injected into the flow is returned to the ground by transfer, 
the magnitude of the temperature changes is not established by the analysis but 



Sel&eserving flow inside a turbulent boundary layer 793 

could be estimated by arguments similar to those used in $ 5  for the wake of a 
fence. 

For comparison, the temperature distribution for heat transfer related to 
temperature gradient by the mixing-length relation 

is 

again showing a restricted spread of heat compared with that of momentum in 
an analogous situation. 

If the surface is impermeable to heat, a situation more likely to occur with 
diffusion of a pollutant than with heat, corresponding results can be obtained 
by putting Qo and 8, equal to zero in the analysis, but it is advantageous to con- 
struct the line source by superimposing the distributions of surface flux 

< 
Q(0) = 0, x < O , }  and { Q ( O )  = 0, 
Q(0) = Qo, x > 0, &(O) = -&o,  x > 4 

where A is a very small length. The first distribution of surface flux causes a self- 
preserving temperature field 

and conservation of heat requires that 

T = - ( & o / h )  @ l ( Z / U  (8.9) 

Qox =lorn UTdx = - ~ o ( l o g ~ ~ o ~ @ l ( ~ ) d ? l + S ~ l o g ~ @ l ( ~ ) d ~ ] .  k2 0 (8.10) 

Equation (7.1 1) shows that 

and so 

(8.11) 

(8.12) 

in agreement with the asymptotic expression (4.8) for I,. Superposition of the 
two distributions leads to the self-preserving field 

(8.13) 

where &,A is the strength of the line-source and l i ldlo/dx is to be calculated 
from equation (8.12). The only restrictions placed on @1 are that it shall assume a 
logarithmic form for small 7 in the thermal equilibrium layer and be zero for 
large 7. As a consequence of the restrictions on @,, the distribution function 
for the line-source @,(r) = 79; must be such that 

(8.14) 

with lo defined by (8.12). In  units of I,, the centroid of the distribution is at 

(8.15) 
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and, unless the vertical gradient of temperature changes sign, 
- 
7 2 2. 

Ilrl(7) = 1 for 7 < 4, 
The extreme value of B is for a ‘top-hat ’ distribution 

= 0 for 7 > 4. 
The actual centroid Z = TZ,, is related to position by 

OD 

- log ?j - 2 1  $l(r) log 7 d r )  = 2k27x. 
0 

(8.16) 

(8.17) 

Ellison (1959) and Cermak (1963) have assumed Lagrangian similarity of the 
diffusion from a line source and derive equations for Z very similar to (8.17) 
for large values of logZ,/x, but with the right-hand side replaced by bkx where 
b is an undetermined constant equal to 2kl’j in our notation. By deriving the equa- 
tion from the step-flux solution, the constant b = 2k7 is shown to be simply a 
function of the profde shape and not less than +?c whatever the profile. 

Multipole sources can be treated in the same way, obtaining the temperature 
distributions by successive differentiations of the basic distribution with respect 
to x. The usefulness of these solutions is that the combination of a simple source 
with multipole sources permits the construction of special initial temperature 
distributions, including an elevated line source. The temperature scale of these 
distributions varies nearly as x-p where p is the order of the multipole, i.e. 1 for 
a simple source 2 for a dipole, 3 for a quadrupole, etc. 

9. Discussion 
If self-preserving development of a flow is dynamically possible, it  is commonly 

found that the corresponding real flow develops in a nearly self-preserving way, 
the only known exception being a cylinder wake formed in a, stream undergoing 
uniform strain (Reynolds 1962; Keffer 1965), which is a very special case with 
two distinct sources of turbulent energy. As for boundary layers, the conditions 
for self-preserving development are satisfied only if the velocity variation is small 
except within the equilibrium layer at the surface. The condition is not very well 
satisfied in meteorological contexts, but the ratios of the terms in the equations 
of motion which are not self preserving to those that are vary very slowly, and the 
flow is almost self preserving in the sense that its development can run parallel 
with that of a truly self-preserving flow with nearly the same boundary con- 
ditions (Townsend 1961). Experience with boundary layers shows that accurate 
predictions can be obtained by assuming the velocity distribution to be self 
preserving and using the condition of total momentum to relate it to the boundary 
stresses. In  a second paper, the technique is applied to the perturbation flows, 
and the improved approximations are discussed in relation to some of the 
observations. 

If the surface roughness is uniform, the results of $5 8 and 9 are equivalent to 
those obtained by Ellison (1959) and by Cermak (1963) using the concept of 
Lagrangian similarity of the diffusion process. Briefly, they assume that the 
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Lagrangian auto-correlation function of a particle takes a similarity form with 
a time scale that is proportional to the reciprocal of the rate of shear at the 
average height of the particles at the time. The assumption is equivalent to one 
of self preservation, but it is more difficult to isolate dynamical inconsistencies. 
In particular, it  is clearly necessary that the stream velocity should be nearly 
constant for all the released particles, which is also a limitation of the self- 
preserving hypothesis. The theoretical advantage of using the Eulerian concept 
of self preservation is that the routine verification of dynamical consistency 
enables the inclusion of more complicated and realistic flows. A practical ad- 
vantage is that actual flow modifications are as easily treated as diffusion of 
passive pollutants. 
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Appendix : The dependence of the Reynolds stress on the velocity field 
To illustrate the nature of the perturbation flows, velocity profiles have been 

derived assuming the equilibrium relation between Reynolds stress and local 
velocity gradient 

but advection and convection of Reynolds stress are large enough to cause 
considerable departures from unity except within the equilibrium layer. If the 
flow is self-preserving, an improved and more plausible approximation to the 
true relation can be obtained. Assume structural similarity of the turbulent 
motion, i.e. that 

(i) the ratio of the Reynolds stress to the kinetic energy of the ‘active’ 
turbulent motion is everywhere the same, and 

(ii) the rate of energy dissipation is everywhere as it is in an equilibrium 
layer. The justification for the .first assumption is that all the turbulence is 
generated or destroyed in shearing flow and remains as anisotropic as possible. 
The second one says that the effective scale of the turbulent motion is proportional 
to distance from the surface. Then the equation for the kinetic energy of the active 
component of the turbulence is 
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As mentioned in $4, the equation takes a self-preserving form for large log Zo/zo 
with 

&? = BZ+~ouiQ(7), 

by assumption (i) , 

and 
__ 
4q2w +p,W = U ~ U ,  D(r) ,  

321% 
7-1 F(7)  by assumption (ii). 

€‘€l+T 
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FIGURE 6. Comparison of stress distribution functions for s change of roughness. The 
curves represent solutions of equation (A 5):  -, mixing length, i.e. no advection or 
diffusion, kaq;dlu: = 0; - - -, with sdvection but without diffusion, i.e. k a a  &L, a = l a n d  
01 = 0; --, with advection and diffusion, i.e. kas/u! = a = 1. 0, Panofsky t Town- 
send profile; 0, Elliott profile. 

After substitution of the self-preserving relations for dZ,/dx and du,/dx, it takes 
the non-dimensional form 

f’ - 7-l F = IcD’ - 2k2 ( ~ Z , / U ? )  7P‘, (A 2) 

the terms on the right representing the effects of vertical diffusion and advection 
respectively. A crude assumption about the vertical diffusion is that 

ip2W +@ii = - aIcu,z(a(@)/aZ), (A 3) 
implying that the diffusivity for energy is comparable with that for momentum 
in the undisturbed flow. In  terms of the non-dimensional functions, it  is 

m) = - ak(a2,/u3 YP’, 
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nf' - P + P@/zc?) {272~'  + OC(~P'  + F")) = 0. 

797 

and the energy equation becomes 

(A 4) 

Combined with the appropriate self-preserving relation between the velocity and 
stress distribution functions, a single equation for f or F is obtained which could 
be solved with the appropriate boundary conditions. For the change of roughness 
flow, equation (4.10) leads to 

P + P' = k2(i$j/u;) {272F + a(yP' + 72P")). 

P(7)  = exp ( - 71, 

(A 5) 

Remembering that the distribution without advection or diffusion is 

we can see that advection reduces the value of P and that diffusion opposes this 
tendency. For example, if k2(p/G) = 1 and a = 0 (no diffusion), 

On the other hand, if oc = k2(8,uf) = 1, a very rough attempt at a numerical 
solution shows a partial return to the simple form. Figure 6 shows the stress 
distributions for the three transfer assumptions and also for the implied dis- 
tributions of Elliott and of Panofsky & Townsend. 


